首页> 外文OA文献 >In-process tool condition monitoring systems in CNC turning operations
【2h】

In-process tool condition monitoring systems in CNC turning operations

机译:CNC车削操作中的过程中刀具状态监控系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present study shows the development of in-process tool condition monitoring systems utilizing signal decomposition technique, statistical data analysis, and artificial neural networks system. Two systems; (1) the system based on the multiple regression, (2) the system based on artificial neural networks with back-propagation learning algorithms were developed;The raw signals obtained from two sensors (tri-axial accelerometer and AE sensor) with different machining parameters and tool conditions were examined and decomposed into six components by utilizing a wavelet transformation. The most significant components of each signal were found by statistical method and implemented to develop two in-process tool monitoring systems;Before the multiple regression system was developed, a statistical process was performed to eliminate the effects of machining parameters from the signals of the accelerometer and AE sensor. The prediction performance improved 12.6% from the process;In order to maximize the benefit of artificial neural networks system in tool monitoring systems, a novel approach was performed in this study. A great number of networks structures were tested systemically to find an optimized structure for the artificial networks tool condition monitoring system. The technique provided benefits of not only saving time but also testing all possible structures more accurately compared with the traditional manual trial-and-error methodology;The developed statistical multiple regression tool condition monitoring system showed 90% accuracy, and the developed artificial neural networks tool condition monitoring system showed 97% accuracy from 151 tests with the reject flank wear size of 0.00787 inch (0.2 mm) or larger;The successful development of the tool condition monitoring systems can provide a practical tool to reduce downtime related with tool changes and minimize the amount of scrap in metal cutting industry. Implications of the study and recommendations for further research were provided.
机译:本研究显示了利用信号分解技术,统计数据分析和人工神经网络系统开发的过程中工具状态监视系统。两个系统; (1)基于多元回归的系统,(2)开发了基于具有反向传播学习算法的人工神经网络的系统;从两个具有不同加工参数的传感器(三轴加速度计和AE传感器)获得的原始信号利用小波变换对工具条件进行了检查,并将其分解为六个部分。通过统计方法发现每个信号的最重要成分,并将其实施以开发两个过程中工具监控系统;在开发多元回归系统之前,执行统计过程以消除加速度计信号中加工参数的影响和AE传感器。该过程的预测性能提高了12.6%;为使人工神经网络系统在工具监控系统中的利益最大化,本研究采用了一种新颖的方法。系统地测试了大量网络结构,以找到用于人工网络工具状态监视系统的优化结构。与传统的人工试错法相比,该技术不仅节省时间,而且还可以更准确地测试所有可能的结构;开发的统计多元回归工具状态监视系统显示了90%的准确性,而开发的人工神经网络工具则带来了好处状态监测系统在151次测试中显示出97%的精度,剔牙齿面磨损尺寸为0.00787英寸(0.2毫米)或更大;成功开发的工具状态监测系统可以提供实用的工具,以减少与工具更换相关的停机时间并最小化金属切削行业中的大量废料。提供了研究的意义和进一步研究的建议。

著录项

  • 作者

    Lee, Soo-Yen;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号